Gaussian Discriminant
Analysis

CCS Machine Learning, based on Andrew Ng’s CS 229
Lecture Notes



Introduction

e We just talked about Generative -vs- Discriminative models

e Although GDA (or NDA) had discriminative in the name, it is a GENERATIVE
model.

e What does this mean?

o We want to model p(x | y)
e Assumption: p(x |y ) is distributed according to a multivariate normal
distribution



Multivariate Normal Distribution

e MVN in n-dimensions is parametrized by a mean vector u € R™ and a
covariance matrix X € R**"

® Y > (is symmetric and positive semi-definite

e The density is as follows:

p(:’L’; Hs E) — (271')”;'2'1/2 CXp (—%(:U o H‘)Tz_l(x - H’))

e The absolute value indicates the determinant of the matrix in the above
equation.
e We will also use the notation N (u,X)
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e Leftis a Gaussian with mean zero and covariance matrix equal to |, i.e. a
Standard Normal

e Middle has a gaussian with zero mean and has a covariance matrix of .67l

e Rightis a gaussian with zero mean and has a covariance matrix of 2%

e Note that the mean is a coordinate pair, and the covariance is 2x2



GDA

e Context:
o Classification, specifically binary classification
o Input features x are continuous-valued random variables

e We are modeling p(x | y) using a multivariate normal distribution

e The model: y ~ Bernoulli(¢)

zly=0 ~ N(po,Z)
ﬂi‘ly:l ~ N(p‘laz)

e Explicitly: ply) = ¢¥(1— )i
paly=0) = e (~5@ - w0 = o )
Poly=1) = G o (0 — ) E o~ m) )



Log-Likelihood

e Just like in logistic regression and linear regression, we also aim to maximize
the likelihood function of our parameters by using the log-likelihood

10g ]:[p(ﬂ;'(z), y(z), Gb, o, 1, E)

i=1

= log [ [ p(@®1y?; po, 11, 2)p(y"; ).

e |

£(¢7 Ko, K1, E)



Maximum Likelihood Parameters

e After a bit of arithmetic, the maximum parameters are as follows:
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Pictorially what
is Learned:

Notice that the covariance
matrix is shared between
each of the classes. This
means that we are
modeling two separate
gaussians, with the same
shape. As a result, they
will be translations of one
another.




Generalizing Gaussian Discriminant
Analysis

Linear Discriminant Analysis (LDA) is another name for GDA because of the
decision boundary that is learned
LDA:

o class-specific mean, common covariance matrix

Quadratic Discriminant Analysis (QDA):
o class-specific mean, class-specific covariance matrix
General Discriminant Analysis (GDA):

o Encompasses both LDA and QDA
o  Modeling p( x| y) by multivariate Gaussians

Note that is why people use NDA or LDA for Gaussian Discriminant Analysis.
Acronyms should not overlap.



Relationship to Logistic Regression

e GDA learns p( x|y ) and logistic regression learns p(y | x)
e It turns out, with our GDA assumptions, if we view the quantity »(y = 1|z; ¢, po, 1, X)
as a function of x, we find that it can be expressed in the form:

1
1+ exp(—6Tx)

p(y = 1|z; ¢, X, pho, p1) =

e This is precisely logistic regression!
e Differences:

o They learn different decision boundaries for the same set of data
o If we try to model p(y | x) with a logistic function, it is not necessarily the case that p(x |y ) is
MVN



Which is Better?

e GDA makes stronger modeling assumptions, but when these modeling

assumptions are correct it is better, in fact it is asymptotically efficient

o Inthe limit of large training sets (large m) no algorithm is strictly better than GDA
o By better we mean how accurately they estimate p(y | x)

e Even for small training sets we expect GDA to be better
e However, logistic regression makes weaker assumptions, which means that it
is more robust and less sensitive to incorrect modeling assumptions
e E.Q.
o x|ly=0"Poisson(L_0), x|y =1" Poisson(L_1)

o p(ylx)islogistic
o  GDA might not do as well



To Summarize:

o GDA:

o makes stronger modeling assumptions
o  More data efficient
m Requires less data to learn “well”
e Logistic Regression:
o Makes weaker assumptions
o More robust to deviations from modeling assumptions
e If the data is not Gaussian:

o Inthe limit of large datasets, logistic regression will almost always perform better than GDA
o  This is why logistic regression is used more in practice



In GDA the feature vectors x were continuous, real-valued vectors
What if the xi’s are discrete-valued?

We will build a model for p(x | y ) where the xi’s are discrete

We will use a classifier called a Naive Bayes Classifier to do this



Spam Filter

e Classify spam -vs- not spam

e We build feature vectors whose length is equal to the number of words in a

dictionary
e Using our training set, we create a vocabulary, V
e The dimension of x is equal to VI
e If we have a vocabulary of 50000 words,

= {01 1}50000'
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Naive Bayes (NB)

e Tomodelp(xly), we will make a very strong assumption

e We assume the xi’s are conditionally independent given y
o This is the Naive Bayes assumption
e Eg

o Ify=1means spam and “buy” is word 2087 and “price” is word 39831; then we are assuming
that if y =1, then knowing the value of word 2087 will have no effect on word 39831
o This is probably not true

e Thus, we are learning:
p(z1,..., 3350000|ZU)
= p(@1|y)p(xaly, x1)p(z3|y, 21, T2) - - - P(T50000|Y; T15 - - - ; Tag999)
p(z1|y)p(z2|y)p(zsly) - - - P(T50000/Y)

= | | p(z:ly)

i=1



The Joint Likelihood

e Given our training set in the same notation as we always do:
e The Likelihood is:

L(¢y, Djly=0; ¢j|y=1) - Hp(x(i): y(i))'
i=1
e Maximizing the likelihood with respect to our parameters yields:
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Making a Prediction

e Given a new example with features x:

p(zly = 1)p(y = 1)
p(x)

p(y = 1|z)

(ITy p(zily = 1)) p(y = 1)
(ITizi p(zely = 1)) p(y = 1) + (I [i; p(@:]y = 0)) p(y = 0)

e Repeat for all classes, and choose the class with the highest probability



Naive Bayes -vs- GDA

What if our data was not Gaussian? GDA would perform poorly but if we
discretize our data, we can still apply Naive Bayes
E.Q.

o If we use some feature xi to represent living area, we can discretize it as follows:

Living area (sq. feet) | < 400 | 400-800 | 800-1200 | 1200-1600 | >1600

; 1 ] 2 | 3 | 4 | 5
Now we can model p ( xi | y ) with a multinomial distribution (instead of a
Bernoulli)



Generative -vs- Discriminative

e [Easytofit?
o  Generative are typically easier as they sometimes only require counting and averaging
o Discriminative requires solving an optimization problem
e Fit classes separately?
o In generative, we do not need to retrain the model when adding additional classes
o In discriminative, all the model parameters interact, so retraining is a must
e Handle missing features easily?
o  Generative classifiers handle this by marginalizing the missing points out
o  Discriminative does not have an easy way to do this
e Symmetric in inputs and outputs?
o  We can run a generative model “backwards” and infer probable inputs given the output by

computing p(x | y). This is because we are modeling the joint probability
o Not possible in discriminative



e Can handle feature preprocessing?

O

New features can be correlated in complex ways, making it tough to do with a generative

model
This can be done arbitrarily with discriminative models. Just replace x with f(x), with f some

basis function

e Well-calibrated probabilities?

O

O

Generative models such as Naive Bayes make strong independence assumptions which are

often not valid
Discriminative models are better calibrated as they do not make as many assumptions about

the underlying data






