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Introduction
● We just talked about Generative -vs- Discriminative models
● Although GDA (or NDA) had discriminative in the name, it is a GENERATIVE 

model.
● What does this mean?

○ We want to model p(x | y)

● Assumption: p( x | y ) is distributed according to a multivariate normal 
distribution



Multivariate Normal Distribution
● MVN in n-dimensions is parametrized by a mean vector                   and a 

covariance matrix 
●            is symmetric and positive semi-definite
● The density is as follows:

● The absolute value indicates the determinant of the matrix in the above 
equation.

● We will also use the notation 



Examples

● Left is a Gaussian with mean zero and covariance matrix equal to I, i.e. a 
Standard Normal

● Middle has a gaussian with zero mean and has a covariance matrix of  .6*I
● Right is a gaussian with zero mean and has a covariance matrix of 2*I
● Note that the mean is a coordinate pair, and the covariance is 2x2



GDA
● Context:

○ Classification, specifically binary classification
○ Input features x are continuous-valued random variables

● We are modeling p(x | y) using a multivariate normal distribution
● The model:

● Explicitly:



Log-Likelihood
● Just like in logistic regression and linear regression, we also aim to maximize 

the likelihood function of our parameters by using the log-likelihood



Maximum Likelihood Parameters
● After a bit of arithmetic, the maximum parameters are as follows:



Pictorially what 
is Learned:
Notice that the covariance 
matrix is shared between 
each of the classes.  This 
means that we are 
modeling two separate 
gaussians, with the same 
shape.  As a result, they 
will be translations of one 
another.



Generalizing Gaussian Discriminant 
Analysis

● Linear Discriminant Analysis (LDA) is another name for GDA because of the 
decision boundary that is learned

● LDA: 
○ class-specific mean, common covariance matrix

● Quadratic Discriminant Analysis (QDA): 
○ class-specific mean, class-specific covariance matrix

● General Discriminant Analysis (GDA): 
○ Encompasses both LDA and QDA
○ Modeling p( x | y ) by multivariate Gaussians

● Note that is why people use NDA or LDA for Gaussian Discriminant Analysis.  
Acronyms should not overlap.



Relationship to Logistic Regression
● GDA learns p( x | y ) and logistic regression learns p( y | x )
● It turns out, with our GDA assumptions, if we view the quantity                                

as a function of x, we find that it can be expressed in the form:

● This is precisely logistic regression!
● Differences:

○ They learn different decision boundaries for the same set of data
○ If we try to model p( y | x ) with a logistic function, it is not necessarily the case that p( x | y ) is 

MVN



Which is Better?
● GDA makes stronger modeling assumptions, but when these modeling 

assumptions are correct it is better, in fact it is asymptotically efficient
○ In the limit of large training sets (large m) no algorithm is strictly better than GDA
○ By better we mean how accurately they estimate p( y | x )

● Even for small training sets we expect GDA to be better
● However, logistic regression makes weaker assumptions, which means that it 

is more robust and less sensitive to incorrect modeling assumptions
● E.g.

○ x | y =0 ~ Poisson(L_0), x | y = 1 ~ Poisson(L_1)
○ p( y | x ) is logistic 
○ GDA might not do as well 



To Summarize:
● GDA:

○  makes stronger modeling assumptions
○ More data efficient

■ Requires less data to learn “well”

● Logistic Regression:
○ Makes weaker assumptions
○ More robust to deviations from modeling assumptions

● If the data is not Gaussian:
○ In the limit of large datasets, logistic regression will almost always perform better than GDA
○ This is why logistic regression is used more in practice



Moving From Continuous Features to 
Discrete

● In GDA the feature vectors x were continuous, real-valued vectors
● What if the xi’s are discrete-valued?
● We will build a model for p( x | y ) where the xi’s are discrete
● We will use a classifier called a Naive Bayes Classifier to do this



Spam Filter
● Classify spam -vs- not spam
● We build feature vectors whose length is equal to the number of words in a 

dictionary
● Using our training set, we create a vocabulary, V
● The dimension of x is equal to |V|
● If we have a vocabulary of 50000 words,



Naive Bayes (NB)
● To model p ( x | y ), we will make a very strong assumption
● We assume the xi’s are conditionally independent given y

○ This is the Naive Bayes assumption

● E.g.
○ If y = 1 means spam and “buy” is word 2087 and “price” is word 39831; then we are assuming 

that if y = 1, then knowing the value of word 2087 will have no effect on word 39831
○ This is probably not true

● Thus, we are learning:



The Joint Likelihood
● Given our training set in the same notation as we always do:
● The Likelihood is:

● Maximizing the likelihood with respect to our parameters yields:



Making a Prediction
● Given a new example with features x:

● Repeat for all classes, and choose the class with the highest probability



Naive Bayes -vs- GDA
● What if our data was not Gaussian?  GDA would perform poorly but if we 

discretize our data, we can still apply Naive Bayes
● E.g.

○ If we use some feature xi to represent living area, we can discretize it as follows:

● Now we can model p ( xi | y ) with a multinomial distribution (instead of a 
Bernoulli)



Generative -vs- Discriminative
● Easy to fit?

○ Generative are typically easier as they sometimes only require counting and averaging 
○ Discriminative requires solving an optimization problem

● Fit classes separately?
○ In generative, we do not need to retrain the model when adding additional classes
○ In discriminative, all the model parameters interact, so retraining is a must

● Handle missing features easily?
○ Generative classifiers handle this by marginalizing the missing points out
○ Discriminative does not have an easy way to do this

● Symmetric in inputs and outputs?
○ We can run a generative model “backwards” and infer probable inputs given the output by 

computing p( x | y ).  This is because we are modeling the joint probability
○ Not possible in discriminative



Generative -vs- Discriminative 
Continued

● Can handle feature preprocessing?
○ New features can be correlated in complex ways, making it tough to do with a generative 

model
○ This can be done arbitrarily with discriminative models.  Just replace x with f(x), with f some 

basis function

● Well-calibrated probabilities?
○ Generative models such as Naive Bayes make strong independence assumptions which are 

often not valid
○ Discriminative models are better calibrated as they do not make as many assumptions about 

the underlying data



Done


